Table of set theory symbols

Symbol	Symbol Name	Meaning / definition	Example
{}	set	a collection of elements	$A = \{3,7,9,14\},$ $B = \{9,14,28\}$
	such that	so that	$A = \{x \mid x \in \mathbb{R}, x < 0\}$
A∩B	intersection	objects that belong to set A and set B	$A \cap B = \{9,14\}$
AUB	union	objects that belong to set A or set B	A U B = {3,7,9,14,28}
A⊆B	subset	A is a subset of B. set A is included in set B.	$\{9,14,28\} \subseteq \{9,14,28\}$
A⊂B	proper subset / strict subset	A is a subset of B, but A is not equal to B.	{9,14} ⊂ {9,14,28}
A⊄B	not subset	set A is not a subset of set B	{9,66} ⊄ {9,14,28}
A⊇B	superset	A is a superset of B. set A includes set B	$\{9,14,28\} \supseteq \{9,14,28\}$
A⊃B	proper superset / strict superset	A is a superset of B, but B is not equal to A.	${9,14,28} \supset {9,14}$
A⊅B	not superset	set A is not a superset of set B	{9,14,28} ⊅ {9,66}
2 ^A	power set	all subsets of A	
$\mathcal{P}(A)$	power set	all subsets of A	
A=B	equality	both sets have the same members	A={3,9,14}, B={3,9,14}, A=B

Symbol	Symbol Name	Meaning / definition	Example
A ^c	complement	all the objects that do not belong to set A	
A'	complement	all the objects that do not belong to set A	
A\B	relative complement	objects that belong to A and not to B	$A = \{3,9,14\},\ B = \{1,2,3\},\ A \setminus B = \{9,14\}$
А-В	relative complement	objects that belong to A and not to B	$A = \{3,9,14\},\ B = \{1,2,3\},\ A - B = \{9,14\}$
ΑΔΒ	symmetric difference	objects that belong to A or B but not to their intersection	A = $\{3,9,14\}$, B = $\{1,2,3\}$, A Δ B = $\{1,2,9,14\}$
А⊖В	symmetric difference	objects that belong to A or B but not to their intersection	A = $\{3,9,14\}$, B = $\{1,2,3\}$, A Θ B = $\{1,2,9,14\}$
a∈A	element of, belongs to	set membership	$A={3,9,14}, 3 \in A$
x∉A	not element of	no set membership	A={3,9,14}, 1 ∉ A
(a,b)	ordered pair	collection of 2 elements	
$A \times B$	cartesian product	set of all ordered pairs from A and B	
A	cardinality	the number of elements of set A	A={3,9,14}, A =3
# A	cardinality	the number of elements of set A	A={3,9,14}, #A=3

Symbol	Symbol Name	Meaning / definition	Example
	vertical bar	such that	$A=\{x 3 \le x \le 14\}$
κ_0	aleph-null	infinite cardinality of natural numbers set	
\aleph_1	aleph-one	cardinality of countable ordinal numbers set	
Ø	empty set	Ø = {}	$A = \emptyset$
U	universal set	set of all possible values	
\mathbb{N}_0	natural numbers / whole numbers set (with zero)	$\mathbb{N}_0 = \{0,1,2,3,4,\}$	$0 \in \mathbb{N}_0$
\mathbb{N}_1	natural numbers / whole numbers set (without zero)	$\mathbb{N}_1 = \{1, 2, 3, 4, 5,\}$	$6 \in \mathbb{N}_1$
Z	integer numbers set	$\mathbb{Z} = \{3,-2,-1,0,1,2,3,\}$	-6 ∈ ℤ
Q	rational numbers set	$\mathbb{Q} = \{x \mid x=a/b, a,b \in \mathbb{Z} \text{ and } b\neq 0\}$	2/6 ∈ ℚ
R	real numbers set	$\mathbb{R} = \{x \mid -\infty \\ < x < \infty\}$	6.343434 ∈ ℝ
С	complex numbers set	$\mathbb{C} = \{z \mid z = a + bi, -\infty < a < \infty, -\infty < b < \infty\}$	6+2 <i>i</i> ∈ ℂ

Probability and statistics symbols table

Symbol	Symbol Name	Meaning / definition	Example
P(A)	probability function	probability of event A	P(A) = 0.5
$P(A \cap B)$	probability of events intersection	probability that of events A and B	$P(A \cap B) = 0.5$
$P(A \cup B)$	probability of events union	probability that of events A or B	$P(A \cup B) = 0.5$
$P(A \mid B)$	conditional probability function	probability of event A given event B occured	$P(A \mid B) = 0.3$
f(x)	probability density function (pdf)	$P(a \le x \le b) = \int f(x) dx$	
F(x)	cumulative distribution function (cdf)	$F(x) = P(X \le x)$	
μ	population mean	mean of population values	$\mu = 10$
E(X)	expectation value	expected value of random variable X	E(X) = 10
$E(X \mid Y)$	conditional expectation	expected value of random variable X given Y	$E(X \mid Y=2) = 5$
var(X)	<u>variance</u>	variance of random variable X	var(X) = 4
σ^2	variance	variance of population values	$\sigma^2 = 4$
std(X)	standard deviation	standard deviation of random variable X	std(X) = 2
σ_X	standard deviation	standard deviation value of random variable X	$\sigma_{x} = 2$

Symbol	Symbol Name	Meaning / definition	Example
$ ilde{x}$	median	middle value of random variable x	$\tilde{x} = 5$
cov(X,Y)	covariance	covariance of random variables X and Y	cov(X,Y) = 4
corr(X,Y)	correlation	correlation of random variables X and Y	corr(X,Y) = 0.6
$ ho_{X,Y}$	correlation	correlation of random variables X and Y	$ \rho_{X,Y} = 0.6 $
\sum	summation	summation - sum of all values in range of series	$\sum_{i=1}^{4} x_i = x_1 + x_2 + x_3 + x_4$
ΣΣ	double summation	double summation	$\sum_{j=1}^{2} \sum_{i=1}^{8} x_{i,j} = \sum_{i=1}^{8} x_{i,1} + \sum_{i=1}^{8} x_{i,2}$
Мо	mode	value that occurs most frequently in population	
MR	mid-range	$MR = (x_{max} + x_{min}) / 2$	
Md	sample median	half the population is below this value	
Qı	lower / first quartile	25% of population are below this value	
Q ₂	median / second quartile	50% of population are below this value = median of samples	
Q ₃	upper / third quartile	75% of population are below this value	

Symbol	Symbol Name	Meaning / definition	Example
$\boldsymbol{\mathcal{X}}$	sample mean	average / arithmetic mean	x = (2+5+9) / 3 = 5.333
S 2	sample variance	population samples variance estimator	$s^2 = 4$
S	sample standard deviation	population samples standard deviation estimator	s=2
Z_X	standard score	$z_x = (x-x) / s_x$	
$X\sim$	distribution of X	distribution of random variable X	$X \sim N(0,3)$
$N(\mu,\sigma^2)$	normal distribution	gaussian distribution	$X \sim N(0,3)$
U(a,b)	uniform distribution	equal probability in range a,b	$X \sim U(0,3)$
$exp(\lambda)$	exponential distribution	$f(x) = \lambda e^{-\lambda x}, x \ge 0$	
gamma(c, λ)	gamma distribution	$f(x) = \lambda c x^{c-1} e^{-\lambda x} / \Gamma(c), x \ge 0$	
$\chi^2(k)$	chi-square distribution	$f(x) = x^{k/2-1}e^{-x/2} / (2^{k/2}\Gamma(k/2))$	
$F(k_1, k_2)$	F distribution		
Bin(n,p)	binomial distribution	$f(k) = {}_{n}C_{k} p^{k} (1-p)^{n-k}$	
$Poisson(\lambda)$	Poisson distribution	$f(k) = \lambda^k e^{-\lambda} / k!$	
Geom(p)	geometric distribution	$f(k) = p(1-p)^k$	

Symbol	Symbol Name	l avos are-rou terel de di la cilia de la cel-		Example	
HG(N,K,n)	hyper- geometric distribution		THE STATE AS THE STATE OF THE STATE AS THE S		
Bern(p)	Bernoulli distribution		A part of the part		

Combinatorics Symbols

Symbol	Symbol Name	Meaning / definition	Example
n!	factorial	$n! = 1 \cdot 2 \cdot 3 \cdot \dots \cdot n$	5! = 1.2.3.4.5 = 120
$_{n}P_{k}$	permutation	${}_{n}P_{k} = \frac{n!}{(n-k)!}$	$_5P_3 = 5! / (5-3)! = 60$
$_{n}C_{k}$			
$\binom{n}{k}$	combination	$_{n}C_{k} = \binom{n}{k} = \frac{n!}{k!(n-k)!}$	$_5C_3 = 5!/[3!(5-3)!]=10$